
Corrigé de l'Ex 1 � TD1

Exercice 1 : Flexion cylindrique des plaques rectangulaires

On considère la plaque rectangulaire longue et étroite (bande in�nie càd a >> b)
de la �gure 1, d'épaisseur h, dont les côtés de longueur a sont parallèles à l'axe (Ox)
et ceux de longueur b sont parallèles à l'axe (Oy). Elle est simplement appuyée sur ses
bords y = 0 et y = b.
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Figure 1 � Plaque rectangulaire longue simplement appuyée.

1) La plaque est soumise à un chargement transversal non uniforme p(y) :

p(y) = p0 sin(
πy

b
)

On suppose que la plaque �échie suivant une surface cylindrique admettant (Ox)
pour direction de génératrice (hypothèse de �exion cylindrique).
a) Déterminer l'expression de la �èche w(x, y) de la plaque.

Solution : w(y) = − p0b
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(corrigée en classe)

b) Exprimer les composantes du tenseur des contraintes dans la plaque.

Solution :
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σzz ≈ 0 d'après l'hypothèse de Kirchho�.

c) Préciser les points où les contraintes (σxx, σyy et σyz) sont maximales et donner
les valeurs correspondantes (σxx,max, σyy,max et σyz,max) pour ν = 1/3.

Solution :
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2) Considérons maintenant le cas de chargement uniforme d'intensité p0 :

p(x, y) = p0

On suppose que la plaque �échie suivant une surface cylindrique admettant (Ox)
pour direction de génératrice (hypothèse de �exion cylindrique).
a) Déterminer alors l'expression de la �èche w(x, y).

Solution :

w(y) = − p0b
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b) En déduire :
- la valeur maximale de la �èche wmax ,

Solution :

Flexion cylindrique suivant (Ox) =⇒ �èche maximale en y = b/2, d'où w(b/2) =

wmax = − 5p0b
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- les valeurs maximales des moments et des contraintes.

Solution :
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12
: moment d'inertie unitaire.

σyz,max =
3Ty,max

2h
= or Ty = D

∂3w

∂y3
= −p0

2
(2y − b) ⇒ Ty,max =

p0b

2
, d'où

σyz,max =
3p0b

4h
.

c) Commenter.

Les résultats trouvés pour cette plaque (�èche et e�orts intérieurs) correspondent
bien à ceux d'une poutre (de longueur b et de section 1×h) simplement appuyée et
chargée uniformément par q = p0×1m). La rigidité à la �exion D sera remplacée
par EI
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